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Abstract—Most recommender services help individual users
by recommending items within a single category based on the
items’ overall ratings. However, this may not be sufficient for
group activities. For example, a group of friends using an
online travel website look for a weekend getaway package (with
hotel and restaurant), where the group members have different
preferences over the characteristics (e.g., price, service, ambi-
ent) of these items. We call items with multiple characteristics
as multi-criteria items. The items may come from different
categories (e.g., hotel, restaurant). This paper proposes a novel
problem of recommending packages of multi-criteria items to a
group of users by leveraging users’ preferences over categories.
As far as we know, our work is the first paper studying this
problem. We propose two models to measure the preference of a
group to a package. The first model utilizes users’ preferences
for all the items and all categories, while the second model
further leverages the influence of different group members
to user preferences. We further introduce a new metric, to
measure the fairness of the recommendations to different group
members. We present an approach that utilizes co-clustering
to incorporate items’ characteristics in the calculation of user
preferences and creating recommendations. Finally, we conduct
extensive experiments with three real datasets. The experiments
show that the second model can find packages that balance
better the preferences of all the group members.

Keywords-group recommender systems, fairness, multi-
criteria items, item categories

I. INTRODUCTION

Recommender systems suggest new items to users based

on the item selections of these users or similar users in

the past. Traditional recommender systems aim to help

individual users by recommending a list of items from a

single category, e.g., a movie, a song, or a restaurant. These

recommendations are based on the items’ overall ratings

given by the users.

However, people participating in group activities may

require recommendations for the whole group. These group

activities could include a weekend getaway package to a

group of tourists, a set of courses to a group of students,

or entertainment packages to group of friends. Making

such recommendations is not an easy task because these

group activities may need to combine items from different

categories (e.g., hotels, restaurants) to form a package, and

that each group member cares about different characteristics

or features (e.g., price, service, ambient, etc.) of these items.

For example, in a group of two people on a hotel-restaurant

package, one cares more about hotel price and restaurant

service, while the other person cares more about the sleep

quality of the room and the ambient of the restaurant. We call

the items with ratings on multiple characteristics as multi-

criteria items. In this paper, we propose a novel problem

of recommending a package of multi-criteria items from

different categories to a group of users. Systems for recom-

mending multi-criteria items have been proposed [1], [2].

However, they only consider items from a single category

and for single users (not a group of users). Recent works

also have explored the direction of recommending packages

of items to a group of users [3], [4]. However they do not

deal with multi-criteria items. To the best of our knowledge,

Mengash and Brodsky [5]–[7] is the only group who has

worked on recommending packages of multi-criteria items

to a group of users. Nonetheless, their methods are semi-

automatic (details see Section II) and do not consider that

items come from multiple categories.

Users have different levels of preferences for different

categories, and this is reflected in the way they select

items [8]–[10]. As far as we know, this work is the first

to study recommending packages of multi-criteria items to

user groups considering users’ preferences for the different

categories. There are several major challenges to solve our

proposed problem. (i) When a group is temporary (i.e.,

formed for a single activity and then dissolve), its modeling

is complex because there is no previous knowledge about

group interaction. (ii) User preferences need to be properly

modeled while considering the features (characteristics) and

categories of items. (iii) A user may belong to multiple

similar user-groups, where different groups of users share

similar preference on different item features. Similarly, an

item may belong to multiple similar item-groups because

of their multiple features. (iv) The goodness of the recom-

mended items needs to be properly evaluated such that every

user is equally happy with the recommendation based on

her/his preferences.

To address these challenges, this paper proposes the

following models, metric, and method, which form the major

contribution of this paper.

• We propose two models that generate multi-criteria

item packages from different categories for a group of

users.

• We design a method to predict missing ratings by

applying co-clustering techniques.



• We present a balance metric to evaluate the goodness

of recommended packages.

• We conduct extensive experiments to show the feasi-

bility of the proposed model, approach, and the metric.

This paper is organized as follows. Related works are

reviewed in Section II. Section III formally defines the

problem of recommending multi-criteria item packages to

a temporary group of users. In Section IV we present our

proposed algorithms to find equally liked item packages for

all the group members. Section V presents our experimental

evaluation. The final conclusions are presented in section VI.

II. RELATED WORK

A. Group recommender systems.

Several works have proposed approaches to recommend

packages of items to a group of users. Pujahari and Pad-

manabhan [11] combine the user-user and item-item Col-

laborative Filtering (CF) techniques to predict items that

are common for the majority of the users in the group.

Feng et al. [12] present a group recommender based on

latent relationships. It calculates the group interests and

item features by combining the users’ preference profiles

and items’ content information. Zhu et al. [13] presents the

PromoRec algorithm which recommends the most popular

items for an automatically identified group of users by

finding the items that are Group-Attractive and Group-

Favorite. Qi et al. [3] propose two probabilistic models

for recommending packages to a group of users. In [3],

the concept of expert user, package viability, and group

fairness are leveraged in the models to select the best

packages for the group. Recently, a group consensus score

function has been proposed [14] to facilitate recommending

items relevant to the majority of a group and deprecating

recommendations towards a few users. This function is based

on user and item saturation functions.

All the above mentioned recommender systems use only

the overall ratings of items, and do not utilize any ratings

on specific item features.

B. Multi-criteria recommender systems.

Several systems have been developed to recommend

multi-criteria items. Adomavicius and Kwon [15] propose a

similarity-based method and an aggregation function-based

method to incorporate multi-criteria information in CF rec-

ommender systems. Likewise, Liu et al. [16] find the item’s

dominant set of features. Then user clusters are formed

according to their criteria preferences, and recommendations

are based on ratings by other users from the same cluster. In

the same way, Jannach et al. [17] make hotel recommenda-

tions based on multi-dimensional customer ratings. Multi-

criteria ratings are used with regression-based methods.

These recommender systems are for individual users rather

than user groups.

C. Multi-criteria item-package recommender systems to

groups of users.

Recommending a set of multi-criteria items to a group

of users has been proposed in recent years. Mengash and

Brodsky [7] propose a Group Composite Alternatives Rec-

ommender (GCAR), which uses the Instant Runoff Voting

(IRV) to make composite recommendations to a group of

users. GCAR is extended in [6] by proposing a Decision-

Guided Group Package Recommender (DG-GPR), which

uses a Hybrid Condorcet-Instant Runoff Voting. In [5] they

extend their previous works to support large heterogeneous

groups. However, all these methods are semi-automatic,

because they require actual users to manually rank the set

of candidate packages and make recommendations based on

users’ rankings.

All the above mentioned methods do not consider users’

preference for the item’s category. Furthermore, the user

similarly is defined using one aggregated score from the

multiple criteria. Our work is different in that we do not

aggregate the effect of the multiple criteria in an early stage.

III. PROBLEM STATEMENT

Our problem involves users, the items that users rated, and

the categories that the items belong to. Let U , I, and C be the

set of users, items, and item categories respectively. The set

U = {u1, u2, · · · , uU} contains U users who have expressed

their preferences for items. The set I = {i1, i2, · · · , iI}
consists of I items. The set C comprises C different item

categories C = {c1, c2, · · · , cC} (e.g., C = {hotel, restaurant,

museum}). Each item i ∈ I must belong to one and only

one category c ∈ C, and must be rated at least by one user u
∈ U . Let c(i) denote the category of the item i and Ic be the

total number of items in the category c. We suppose that each

item i ∈ I is described by a set of features (characteristics)

F = {f1, f2, · · · , fF }. The number of features is different

for different item categories. A user u ∈ U can rate a feature

f of an item i with a rating ruif , which is a non-negative

real number. We consider the overall rating as one special

item feature.

The ratings from a user u to an item i can be

represented as an F -dimensional criteria vector r⃗ui =

(rui1, rui2, · · · , ruiF ). We call these items with ratings on

multiple features as multi-criteria items. The notations are

summarized in Table I.

Table I: Important notations

Symbol Meaning

r⃗ui Ratings from a user u to an item i on this item’s features

POC(u, c) User u’s preference for a category c

aPOC(u, c) User u’s adjusted preference for a category c

Prob(u, ij) The degree that user u likes item ij (used in Eq. 2)

Pref(u, P ) Preference of u over a package P (defined in Eqs. 2 and
3)

Pref(G,P ) Preference of a group G over a package P (defined in
Eq. 4)



A. User preference over item categories.

Past works [8]–[10] show that, if a user rates more items

in one category (say c1) than in another category (say

c2), then this user prefers c1 more than c2. For example,

a user who likes action movies is expected to rate more

action movies than movies in other categories (e.g. drama,

romance). Given this intuition, we define a user’s preference

over a category as follows.

Definition 1 User preference over a category. Given a user

u, her/his preference for an item category c, denoted as

POC(u, c), is defined as POC(u, c) = Iuc

Iu
.

Here, Iuc is the number of items rated by the user u in the

category c, and Iu is the total number of items rated by the

user u. The definition implies that
∑C

c=1 POC(u, c) = 1.

For example, if a user u has ranked 10 movies in total:

five on action movies (A category), three on dramas (D
category), and two on romance movies (R category), then

POC(u,A) = 5
10 , POC(u,D) = 3

10 , and POC(u,R) =
2
10 . Therefore, POC(u,A) + POC(u,D) + POC(u,R) =
1, and it shows that u prefers A over D and R, and prefers

D over R.

The definition of POC(u, c) does not take into consid-

eration the fact that some categories have more items than

others (e.g. there are more restaurants than museums). This

fact indicates that the larger categories have more rated

items than smaller categories. Accordingly, the percentage

of items rated in each category by a user u is different.

For example, let us suppose that category A contains 100

movies and category B contains 200 movies. According to

the definition POC(u, c), if user u has rated 90 movies

from category A and 90 movies from category B, then user

u has the same preference on both categories. However, this

calculation cannot capture all the information as it can be

seen that user u has rated 90% of movies from category A,

and only 45% of the movies in category B.

Considering the percentage of items that are rated in each

category by a user u, we define an adjusted User Preference

Over a Category (aPOC) as follow:

aPOC(u, c) =
POC(u, c) · PctIu,c

∑C

c′=1 POC(u, c′) · PctIu,c′
(1)

Where PctIu,c is the percentage of the items rated by

user u in the category c. The definition implies that
∑C

c=1 aPOC(u, c) = 1.

Recall that our research problem is to recommend one or

more item sets to a group of users. We define the following

term, package, to constrain an item set.

Definition 2 Package of items from different categories. An

item package P consists of C items {i1, i2, · · · , iC} where

(i) c(ij) ̸= c(ik) if j ̸= k, and (ii) ∪C
j=1c(ij) = C.

The first condition in the definition means that each item

of the package belongs to a different category. The second

condition means that the items in the package cover all the

categories. For example, if we have two categories (hotel and

restaurant), then a package should contain one hotel and one

restaurant (instead of two hotels or two restaurants).

Let a temporary group of users which needs a recommen-

dation be G ⊆ U . For example, a group of friends looking

for a set of movies or activities for vacation. Let u ∈ G,

and a given package P . We propose two different models to

measure users’ preference over a package. These are based

on different social theories, and were adapted because, as

being temporary groups, there is not prior information about

the interaction between their members.

1) The first approach to model user’s preference over

a package: Existing study [18] suggests that, in social

activities, once a person makes a decision, her/his primary

behavior becomes defending or justifying that decision. The

first model (M1) is based on this theory.

In this model, the preference of u ∈ G over P , denoted

as Pref(u, P ), considers several intuitive factors. The first

factor measures the degree that a user u likes the item i
among all the items that this user rates. Let us denote this

factor as Prob(u, i). Let ru,i be the overall rating given

by user u to the item i. Prob(u, i) can be quantified using
ru,i

∑Iu
k=1

ru,ik

. It captures the ratio of the rating that the user u

gives to the item i and the summation of the ratings from

the user u. The second factor takes into consideration user

preference over the categories of the items in the package.

This factor is captured using aPOC(u, c(i)) for all the items

in the package. The third factor captures the importance

of item i to the user u compared with the importance of

this item to other group members. Let us denote this factor

as Prob(u|G, i). Considering that Prob(u, i) measures the

degree that a user u likes an item i, this importance factor

then can be defined as
Prob(u,i)∑

v∈G Prob(v,i) .

Leveraging all these factors, we can define the preference

of u over a package P .

Pref(u, P ) =
∏C

j=1 Prob(u, ij) · aPOC(u, c(ij)) · Prob(u|G, ij)
(2)

This definition implies that a user u prefers an item package

P , if (i) each item in the package has high probability to

be liked by the user, (ii) the package contains elements

belonging to categories on which the user has a high

preference, and (iii) the importance of each item to this user

among all the group members.

2) The second approach to model user’s preference over a

package: Social influence and conformity theory [19], [20]

suggests that it is common for people to change their own

opinion due to input from other people.

The second model (M2) calculates Pref(u, P ) based on

this theory and takes one more factor than the first model.

This factor models the influence from other members of G to

the user u. This influence factor is denoted as Inf(u|G, ij)
and defined as

∑

v∈G Prob(v, ij), where u ̸= v. Lever-

aging the influence factor, the second model M2 defines



Pref(u, P ) as follows:

Pref(u, P ) =
∑C

j=1(Prob(u, ij)+aPOC(u, c(ij)))·Inf(u|G, ij)
(3)

B. Group preference over a package.

The group preference over a package is the aggregation

of the preference of users in this group. In the following

definitions (Defs. 3 and 4), we are given a group of users

G, an item package P , and the preference Pref(u, P ) of

each user u ∈ G.

Definition 3 Group preference over a package. The group

preference for a package P , denoted as Pref(G,P ) is

defined as:

Pref(G,P ) =agg G
|G|
m=1Pref(u, P ) (4)

Where agg is a user defined aggregation function (e.g. sum,

average, min, max).

We are interested in item packages which give a better

balance between the preference of the users in the group. In

order to quantify this, we define a new metric, balance.

Definition 4 Balance of a package. The balance of a

package P for all the users in the group G, denoted as

Balance(G,P ), is defined as:

Balance(G,P ) =
1

|G|
·
∑

u∈G

∣

∣

∣

∣

Pref(u, P )
∑

v∈G Pref(v, P )
−

1

|G|

∣

∣

∣

∣

(5)

A lower balance value is preferred. Here 1
|G| is the ideal

balance for all the group members, meaning that all the users

are equally satisfied with the package. For example, if a

group has three users we would like to recommend a package

that is equally liked by all users, meaning that each user’s

preference for that package is close to 33%.

Then, given a set of packages P1,P2, · · · ,Pp and a

user group G, each package gets a group preference value

Pref(G,Pp) indicating group G’s preference over them.

C. Problem definition

Given the terminologies defined above, we define our

problem as follows.

Definition 5 Multi-criteria package recommendation for a

group of users. Given a 3-way tensor with the ratings from

all the users on all item features

RUIF =

⎛

⎜

⎜

⎜

⎝

r⃗1,1 r⃗1,2 · · · r⃗1,I
r⃗2,1 r⃗2,2 · · · r⃗2,I

...
...

. . .
...

r⃗U,1 r⃗U,2 · · · r⃗U,I

⎞

⎟

⎟

⎟

⎠

, a group of users G ⊆ U , and the definition of group prefer-

ence over packages Pref(G, ·), the problem is to find a set

of item packages P = {P1,P2, · · · ,PK}, such that ∀Pk ∈

P, !Pl|Pl /∈ P s.t. Balance(G,Pl) ≤ Balance(G,Pk) (i.e.,

the returned set contains the top-K packages with the best

balance for G).

Algorithm 1: FindCC (RUIF ) //find co-clusters

Input : 3-way tensor RUIF

Output: SIMUI , CCUI

1 MUI ← the overall rating of users on items (matrix

corresponding to the “overall rating” feature in RUIF

2 MUF ← averaging the I (item) dimension of RUIF

3 MIF ← averaging the U (user) dimension of RUIF

4 Generate co-clustering CCUF from MUF to extract

groups of users sharing similar feature preference ;

5 Derive SIMUI for each group of users in CCUF and

using items from MIF which satisfy the users’

feature preference;

6 Generate co-clustering CCUI from MUI to extract

groups of users sharing similar overall ratings to

items;

7 Return SIMUI , CCUI

IV. PROPOSED APPROACH

This section presents our approach of recommending

packages with multi-criteria items to a group of users.

Figure 1 shows the framework of our proposed approach,

consisting of two major steps, predicting missing ratings

and recommending packages. The details are presented in

Sections IV-A and IV-B respectively.

A. Prediction of missing ratings

Users’ preferences are reflected in their ratings. For the

items that are not rated yet, we need to learn users’ prefer-

ences through rating prediction. To predict the missing rating

of a user u to an item i, we take a CF approach by utilizing

the ratings from u’s similar users and the ratings for the

similar items of item i. The major challenge of this task is

explained as the third challenge in Section I. Therefore, for

a given user (item) we are interested in finding the niche

of users (items) where all the members share something in

common (e.g. similar preference for a set of features) [21].

We propose a co-clustering based approach to solve this

problem. This approach finds similar users and similar items

by using the different features. These similarities are used

to predict the missing ratings.

1) Grouping of users and items: The first step is to find

groups of similar users and groups of similar items. For this

step we use Algorithm FindCC (Algorithm 1). It generates

two intermediate results SIMUI and CCUI , which are used

to calculate similarities among users in the next step.

The algorithm first constructs three matrices, MUI , MUF ,

and MIF . The matrix MUI , user-item matrix, consists of the

overall ratings of each user to every item. The matrix MUF ,

user-feature matrix, contains the aggregated importance of

each item feature to every user by averaging all the item

ratings from each user on every feature. The matrix MIF ,

item-feature matrix, has the ratings of each feature for every



Figure 1: Proposed framework

item by averaging all user ratings on given items and item

features. The next step FindCC is to derive SIMUI from

MUF , MIF , and MUI . In particular, the algorithm calculates

user-feature co-clusters CCUF (Line 4). For each co-cluster,

which consists of a group of users Uclu and a group of

features Fclu, we calculate a feature vector by averaging all

user’s ratings for each feature. Using the feature vector for

the co-cluster, we search MIF to find the Isub items that are

closest to the co-cluster’s feature vector on features Fclu.

We conduct the same procedure for all the co-clusters

in CCUF and get a U × Isub matrix, SIMUI . The last

step of FindCC is to calculate CCUI , which contains the

user-item co-clusters, where each co-cluster groups users

who have similar overall ratings over the corresponding

items in the cluster. As an example, let the user cluster be

Uclu= {u1, u2}, and the features cluster be Fclu = {f1, f2}.

Having the co-cluster

(

ru1,f1 ru1,f2

ru2,f1 ru2,f2

)

, this co-cluster’s

feature vector is (
ru1,f1

+ru2,f1

2 ,
ru1,f2

+ru2,f2

2 ).

Given Isub = 2, we need to find two items that have

features closest to this feature vector. Let the total number

of features be 3, and the total number of items be 4, and

MIF be

⎛

⎜

⎜

⎝

ri1,f1 ri1,f2 ri1,f3
ri2,f1 ri2,f2 ri2,f3
ri3,f1 ri3,f2 ri3,f3
ri4,f1 ri4,f2 ri4,f3

⎞

⎟

⎟

⎠

.

By comparing the co-cluster’s feature vector with

the feature vectors on f1 and f2 for all the items,

(ri1,f1 , ri1,f2), · · · , (ri4,f1 , ri4,f2), we can get the 2 most

similar items. Suppose the two items are i2 and i3, then, the

rows for u1 and u2 in SIMUI contain i2 and i3. Running

the algorithms on all the other user-feature co-clusters, we

can fill in all the rows of SIMUI .

The co-clusters are calculated using the spectral bicluster

algorithm [22].

2) Similarity measurement: The rating prediction requires

defining similarities among users and similarities between

items. We use Adjusted Cosine Similarity (aCS), because it

has shown to work better when users have different rating

scales (i.e., some users usually give high ratings and others

generally give lower ratings) [23]. aCS removes the effect of

the different rating scales by subtracting the average ratings

for all users from each user’s ratings.

User similarity. To find the initial similarity between user u
and user v we use the following equation:

aCSu,v =

∑

i∈I (ru,i − ru) · (rv,i − rv)
√
∑

i∈I (ru,i − ru)2 ·
√
∑

i∈I (rv,i − rv)2
(6)

where ru and rv are the averaged item ratings from user u
and v respectively. Eq. (6) does not consider whether users

u and v are from the same cluster or not. However, this

simplifies the real situation. For example, given that users

u1 and v1 co-occur in five co-clusters (out of ten), and users

u2 and v2 co-occur in two of ten clusters, the similarity

between u1 and v1 should be higher than that between u2

and v2.

We use the ratio of the number of co-clusters in which

both users co-occur and the total number of co-clusters to

adjust the user similarity. In the above example, aCSu1,v1
is

adjusted by 0.5, and aCSu2,v2
is adjusted by 0.2. Formally,

we define the similarity sim(u, v) between user u and user

v as follows.

simu,v =
|CCuv|

|CC|
· aCSu,v (7)

Here, |CC| is the total number of co-clusters in CCUF and

CCUI , and |CCuv| represents the number of co-clusters in

which u and v co-occur (either in CCUF or CCUI ).

Item similarity. In the same way, to find the initial similarity

between item i and item j we use:

aCSi,j =

∑

u∈U (ru,i − ru) · (ru,j − ru)
√

∑

u∈U (ru,i − ru)2 ·
√
∑

u∈U (ru,j − ru)2

(8)

where ru is the user’s average ratings. Similar to the defi-

nition of user similarity, we argue that two items appearing

in more co-clusters should be more similar than items that

co-occur in less co-clusters. Utilizing this intuition, the



similarity between two items i and j are defined as follows.

simi,j =
|CCij |

|CC|
· aCSi,j (9)

Here, |CC| is the total number of co-clusters in SIMUI and

CCUI . |CCij | represents the number of co-clusters that two

items i and j co-occur in SIMUI and CCUI .

3) Ratings prediction: To predict the missing rating of a

user u for item i (r̂ui) in each co-cluster, we combine user

similarity and item similarity (Eqs. (7) and (9)) as follows.

r̂ui = α×
[

u+

∑

u,v∈CC sim(u, v) · (rvi − v)
∑

u,v∈CC |sim(u, v)|

]

+

(1− α)×
[

i+

∑

i,j∈CC sim(i, j) · (ruj − j)
∑

i,j∈CC |sim(i, j)|

]

(10)

Here, α is a balancing parameter that can be adjusted to

emphasize either the role of user similarity or the role of

item similarity. rui represents the rating of a user u to an

item i. For a user u, u is the averaged rating of the user u
to all the items he has rated. For an item i, let Ui be the set

of users who rate item i, then i is the averaged rating of an

item i from all the users.

Finally, the predicted ratings in each co-cluster can be

aggregated (i.e., sum, avg, max, etc.) to obtain a final overall

rating. With the predicted missing ratings for the group

users on all the items, we get a dense user-item matrix,

whose rating values combine user’s preference over different

features. We use M ′

UI to denote this matrix. For each

category, we get such a matrix.

B. Item Package Recommendation

We design Algorithm 2 to recommend item packages to

a group of users.

The algorithm works in several steps. (1) The first step is

to form candidate packages (Line 1). Recall that a package

cover all the categories, and that a package contains one

item from each category. For each category, we form a set

of unique items which is a union of the top-Z items for each

user. Then, we form candidate item packages by combining

the items from the item-sets for different categories. (2) The

second step is to calculate the preference of every user for

each of the categories (Line 3). For this calculation, we need

to extract from M ′

UI (a) Iuc, which is the number of items

rated by the user u in the category c, (b) Iu, the total number

of items rated by the user u, and (c) PctIu,c, the percentage

of the items rated by user u in the category c . (3) The third

step calculates user preference over a package, Pref(u, P ).
Two models in Eq. (2) and Eq. (3) can be used to calculate

this. (4) The last step recommends a set of packages P to the

temporary user group G. We argue that the best packages

are the most balanced ones when all the group members are

equally satisfied. The packages with the K lowest balance

values are recommended to the group.

Algorithm 2: PackageRecommendation

Input : M ′

UI (user-item rating matrix for each

category), C (set of categories), G (group of

users), K (the number of packages to

recommend), Z (the number of items to select

in each category)

Output: T (set of top-K packages)

1 Generate candidate packages using user-item matrix

(M ′

UI ) with Z;

2 foreach c ∈ C do

3 Calculate aPOC(u, c) for every u ∈ G using

Eq. (1);
4 end

5 foreach package P do

6 Calculate Pref(G,P ) using Eq. (4);

7 Calculate Balance(G,P ) using Eq. (5)

8 end

9 T = argmin{Balance(G,P )}
10 Return T ;

Time: Step 1 uses O(ZC) time since there are C categories

and each category contains Z items with high preference.

V. EXPERIMENTAL RESULTS

A. Datasets.

Datasets with multi-criteria ratings and having items from

different categories are rare to find [24]. Datasets used

for group recommenders are generally derived from data

used for recommender systems for individual users [25].

We use three real datasets. The first is extracted from the

TripAdvisor1 website. The second is the Yahoo!Movies2

multi-criteria dataset. The last one is the BeerAdvocate

dataset3.

For TripAdvisor, we collect user reviews for hotels and

restaurants from Los Angeles, California. Users can give

restaurants an overall rating and a rating for the service,

value, food, and atmosphere. In the same way, the users

give an overall rating for each hotel and for the service,

cleanliness, value, sleep quality, location, and rooms. For

both categories, the ratings are in a scale from 1 to 5, being

1 the worst rate and 5 the best rate. We pick users who have

rated at least 10 items in both categories, for a final dataset

containing 283 users, 266 hotels, and 2,073 restaurants.

In the Yahoo!Movies dataset, the films may belong to one

or more of 18 existing genres. We pick the first genre of

those movies as their category. We select 3,144 users who

have rated at least 10 movies. The whole dataset contains

11,915 movies. Users give each movie an overall score, and

scores on the story, acting, directing, and visuals. We use the

1https://www.tripadvisor.com/
2https://webscope.sandbox.yahoo.com/
3http://wwww.beeradvocate.com/



range 1 to 5 for the ratings. For package recommendations,

we consider each movie’s genre as a different category. Note

that people may not agree that a genre is strictly a category.

We use this dataset for method comparison.

The BeerAdvocate reviews include ratings on four aspects

(appearance, aroma, palate, taste) in addition to an overall

rating for different types of beers. The ratings are in a scale

from 1 to 5. In total there are 104 types of beers, we use these

types as categories. The dataset contains 33,387 users and

66,051 beers, with a total of more than 1.5 million reviews.

To form item packages using TripAdvisor, we consider

both categories (restaurants and hotels). For Yahoo!Movies,

without loss of generalization, we create packages with

the two (action, comedy) and three categories having most

movies (action, comedy, and drama). For BeerAdvocate we

use the top two (American IPA, Imperial IPA) and three

categories (American IPA, Imperial IPA and American Pale

Ale) with the most number of ratings to form packages. We

select users who have rated at least 10 beers in each category.

B. Parameters

Table II lists all the parameters that are used in our models

and approaches. On each test, we vary one parameter’s

Table II: Parameters (default values are in bold)

Parameter Values

Size of a user group 2,3,4,5,6

α 0.4,0.5,0.6,0.7,0.8

Isub (for SIMUI ) 1, 10, 20, 30, 40

Size of co-cluster matrix 4x4, 6x4, 8x4, 10x4, 12x4

Z (for the top Z items) 5, 10, 15, 20, 25

values and keep the other parameters to their default values.

Each test computes the top-10 recommended packages to a

random group of users, to simulate temporary groups.

C. Baseline methods.
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Figure 2: Comparing our models using Yahoo!Movies with

two and three categories (2C: 2 categories, 3C: categories)

Theories [26] show that group happiness is either the

averaged happiness (i.e., averaged ratings) of the members,

or seeks for fairness by giving preference to people whose

preferred item is not chosen in previous recommendations

(i.e. items are ranked as if each member is choosing them

in turn).

We create two baseline methods based on an average

strategy [5] (denoted as Average) and a fairness strategy

[27] (denoted as Fairness). We further implement the third

baseline (denoted as GR) based on [3], which introduces a

Group Rating (GR) model by leveraging item ratings, user

impact in the group, package viability, and fairness to find

packages of items. GR’s two aspects (user impact in the

group and fairness) are related to our problem definition.

D. Metrics.

Three evaluation metrics are used. The first two are

consensus and m-envy-freeness [25], [28]. The consensus

metric of a group of users G on one item i (Eq. (11)) is

calculated using the pairwise distances of item preferences

among all the group members. The consensus of G over a

package P is the averaged consensus of all the items in P .

consensus(G, i) = 1−
(

∑
uj∈G∧uk∈G∧j ̸=k |Pref(uj ,{i})−Pref(uk,{i})|

|G||G−1|

)

(11)

Pref(u, {i}) is defined in Eq. (2) (for M1 method) and

Eq. (3) (for M2 method) where {i} represent a package with

only one item i.
Let Gef be the group of users having at least m items in

the top x% item ratings (according to preferences). The m-

envy-freeness metric is defined to be the proportion of Gef

in G (Eq. 12), where |.| represent cardinality.

fairnessm−envy(G) =
|Gef |

|G|
(12)

The lower bound of fairnessm−envy(G) captures the situ-

ation that the minimum number of users having their prefer-

ences in the top positions and is calculated as
[x%×|G|]

|G| where

[·] represents the nearest integer function. The upper bound

captures the situation that the top positions are spread among

the maximum possible number of users and is calculated

as
C×[x%×|G|]

|G| . This metric has the effect of averaging

user’s preferences because it evaluates the items based on a

threshold (x%) not based on their specific preference ranks.

E.g., two items may have different preference ranks but are

all within 25%, then there is no difference in counting users

who like these two items. These two metrics capture to

which extent group members agree on the recommended

packages based on the user’s preference for the items.

We also propose a new metric, Balance Error (BE),

which is given by the following equation

BE =

K
∑

i=1

(Balance(G,Pi)) (13)

This metric measures how far the recommended packages

are from the ideal fairness when considering the users’

preferences for both the items and categories.
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Figure 3: Balance error for different aggregation functions
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Figure 4: Balance error for different group sizes
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Figure 5: Balance error for different α values
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Figure 6: Balance error for different top-Z items

E. Results

We only present the figures for the most interesting results

in following sections due to space limitations.

1) Comparing M1 and M2 models: Figure 2 shows the

comparison of our two models when the item packages are

formed with two and three categories. The results show

that the M2 model, which considers the influence of group

members, produces packages that are more balanced. This

is consistent with the intuition behind the design.

2) Comparing the balance metric with other aggregation

functions: Figure 3 shows that when utilizing the balance
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Figure 7: Consensus for different group sizes
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Figure 8: m-envy-freeness for different group sizes with m = 1(red dashed line: upper bound, blue dashed line: lower bound)

metric, instead of traditional aggregation functions (i.e.

mean, min, max, sum, and geometric mean), our models can

return packages with lower BE. Furthermore, these results

show that M2 outperforms M1, producing packages that are

more balanced for the group in all cases.

3) Sensitivity to group size: We create temporary user

groups with 2 to 6 members. The users in each group are

randomly chosen. Figure 4 shows again that M2 has lower

BE than the other methods as the group size increases. This

is mainly because the influence exerted by the group mem-

bers makes them be more conformed when a larger number

of candidate packages are generated. We also find that M2
error is higher than the baselines for the Yahoo!Movies

dataset with two categories when only two users are in the

group. We attribute this to the little influence exerted on each

of the members.

4) Sensitivity to the size of co-cluster matrix: The calcu-

lation of the preference of the users for the items is achieved

by co-clustering users, items, and features. The co-clustering

technique we utilize needs to specify the size of co-cluster

matrices (e.g. rows and columns). The column size is set to

four because this is the maximum number of features for

restaurants. Given the results, we conclude that the size of

the co-cluster matrix is not a determining factor as the BE

error remains stable in all cases.

5) Sensitivity to α value: Recall that α is a balancing

parameter between the user similarity and the item similarity

for the prediction of missing rates. Figure 5 shows the results

for different α. The results show that varying this parameter

has more influence on the baseline methods. This is because

the baseline methods only consider user ratings, and not the

adjustment from features, categories and influence.

6) Sensitivity to Isub: For the missing ratings prediction,

we need to calculate SIMUI which contains the best Isub
items for the users in each user-feature co-cluster. When

varying the values of Isub we get a stable BE, indicating that

this parameter does not have much influence on the results.

As these results suggest we can use the smallest Isub (which

is 1) to improve the calculation efficiency.

7) Sensitivity to Z: We pick the top-Z items in each cat-

egory for each group user. Figure 6 shows that different Zs

do not affect the balance errors of our two models. Note M2
performs worse than some baselines for the Yahoo!Movies

and BeerAdvocate datasets when using small Z values. This

is attributed to that, when Z is small, there are fewer options

to choose elements to form more balanced packages. Such

behavior is also observed for the TripAdvisor dataset.

8) Consensus and m-envy-freeness metrics: Figure 7

plots the consensus results, which shows that our models

(M1 and M2) outperform the baseline methods. This is

because the users have more similar preferences for the

package items using models M1 and M2. The absolute

consensus values are high because preferences Pref(u, {i})
are small numbers.

For the experiments on evaluating the methods using m-

envy-freeness, we used m = 1, and x = 25. We select



these values considering that the group sizes and the number

of categories are small. Figure 8 shows the results and the

upper bounds and lower bounds. The figure shows that our

M2 model is slightly better than other models in most

cases and is closer to the theoretical upper bound than

the baseline models. This metric does not differentiate the

different methods much because of its effect of averaging

items’ preferences. We note that the trend of this metric

decreases before G = 5, bumps up at G = 6, and decreases

again. This is because x%× |G| for G ≤ 5 is rounded to 1

while x%× |G| for G = 6, 7 is rounded to 2.

We can see that our models have good performance for

these two metrics, and in most cases M2 model performs

better, which indicates that it can recommend packages that

are more balanced for the group members.

VI. CONCLUSIONS

This paper studied the problem of recommending pack-

ages of multi-criteria items from different categories to a

temporary group of users. We proposed a framework to

solve this problem, which consists of two steps, estimating

the missing ratings of users and recommending packages.

In both steps, we need to calculate user’s preference over

packages.

We introduced two models to do the calculation, where

the second model considers the influence of group members.

Considering that the ratings for items are on multiple criteria,

it is important to leverage the similarity of each criterion. To

address this issue, we co-clustered users and items, items and

features, and users and features. Utilizing the co-clusters, we

calculated user-item missing ratings.

Finally, we proposed a balance metric to evaluate the

goodness of the recommended packages. Our extensive

experiments on three real datasets show that our second

model outperforms the first model and the baselines for

different parameter settings and different metrics.
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